Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
EBioMedicine ; 103: 105097, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608515

RESUMO

BACKGROUND: Extended-spectrum cephalosporins (ESCs) are third and fourth generation cephalosporin antimicrobials used in humans and animals to treat infections due to multidrug-resistant (MDR) bacteria. Resistance to ESCs (ESC-R) in Enterobacterales is predominantly due to the production of extended-spectrum ß-lactamases (ESBLs) and plasmid-mediated AmpC ß-lactamases (AmpCs). The dynamics of ESBLs and AmpCs are changing across countries and host species, the result of global transmission of ESC-R genes. Plasmids are known to play a key role in this dissemination, but the relative importance of different types of plasmids is not fully understood. METHODS: In this study, Escherichia coli with the major ESC-R genes blaCTX-M-1, blaCTX-M-15, blaCTX-M-14 (ESBLs) and blaCMY-2 (AmpC), were selected from diverse host species and other sources across Canada, France and Germany, collected between 2003 and 2017. To examine in detail the vehicles of transmission of the ESC-R genes, long- and short-read sequences were generated to obtain complete contiguous chromosome and plasmid sequences (n = 192 ESC-R E. coli). The types, gene composition and genetic relatedness of these plasmids were investigated, along with association with isolate year, source and geographical origin, and put in context with publicly available plasmid sequences. FINDINGS: We identified five epidemic resistance plasmid subtypes with distinct genetic properties that are associated with the global dissemination of ESC-R genes across multiple E. coli lineages and host species. The IncI1 pST3 blaCTX-M-1 plasmid subtype was found in more diverse sources than the other main plasmid subtypes, whereas IncI1 pST12 blaCMY-2 was more frequent in Canadian and German human and chicken isolates. Clonal expansion also contributed to the dissemination of the IncI1 pST12 blaCMY-2 plasmid in ST131 and ST117 E. coli harbouring this plasmid. The IncI1 pST2 blaCMY-2 subtype was predominant in isolates from humans in France, while the IncF F31:A4:B1 blaCTX-M-15 and F2:A-:B- blaCTX-M-14 plasmid subtypes were frequent in human and cattle isolates across multiple countries. Beyond their epidemic nature with respect to ESC-R genes, in our collection almost all IncI1 pST3 blaCTX-M-1 and IncF F31:A4:B1 blaCTX-M-15 epidemic plasmids also carried multiple antimicrobial resistance (AMR) genes conferring resistance to other antimicrobial classes. Finally, we found genetic signatures in the regions surrounding specific ESC-R genes, identifying the predominant mechanisms of ESC-R gene movement, and using publicly available databases, we identified these epidemic plasmids from widespread bacterial species, host species, countries and continents. INTERPRETATION: We provide evidence that epidemic resistance plasmid subtypes contribute to the global dissemination of ESC-R genes, and in addition, some of these epidemic plasmids confer resistance to multiple other antimicrobial classes. The success of these plasmids suggests that they may have a fitness advantage over other plasmid types and subtypes. Identification and understanding of the vehicles of AMR transmission are crucial to develop and target strategies and interventions to reduce the spread of AMR. FUNDING: This project was supported by the Joint Programming Initiative on Antimicrobial Resistance (JPIAMR), through the Medical Research Council (MRC, MR/R000948/1), the Canadian Institutes of Health Research (CFC-150770), and the Genomics Research and Development Initiative (Government of Canada), the German Federal Ministry of Education and Research (BMBF) grant no. 01KI1709, the French Agency for food environmental and occupational health & safety (Anses), and the French National Reference Center (CNR) for antimicrobial resistance. Support was also provided by the Biotechnology and Biological Sciences Research Council (BBSRC) through the BBSRC Institute Strategic Programme Microbes in the Food ChainBB/R012504/1 and its constituent project BBS/E/F/000PR10348 (Theme 1, Epidemiology and Evolution of Pathogens in the Food Chain).

2.
Ecotoxicol Environ Saf ; 273: 116145, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460199

RESUMO

The presence of methicillin-resistant or -susceptible S. aureus in pig nostrils has been known for a long time, but the occurrence of extended-spectrum beta-lactamase (ESBL)-producing E. coli has hardly been investigated. Here, we collected 25 E. coli recovered from nasal samples of 40 pigs/10 farmers of four farms. Nine ESBL-producing isolates belonging to ST48, ST117, ST847, ST5440, ST14914 and ST10 were retrieved from seven pigs. All blaESBL genes (blaCTX-M-32,blaCTX-M-14,blaCTX-M-1,blaCTX-M-65, and blaSHV-12) were horizontally transferable by conjugation through plasmids belonging to IncI1 (n=3), IncX1 (n=3) and IncHI2 (n=1) types. IncI1-plasmids displayed different genetic environments: i) IS26-blaSHV-12-deoR-IS26, ii) wbuC-blaCTX-M-32-ISKpn26 (IS5), and iii) IS930-blaCTX-M-14-IS26. The IncHI2-plasmid contained the genetic environment IS903-blaCTX-M-65-fipA with multiple resistance genes associated either to: a) Tn21-like transposon harbouring genes conferring aminoglycosides/beta-lactams/chloramphenicol/macrolides resistance located on two atypical class 1 integrons with an embedded ΔTn5393; or b) Tn1721-derived transposon displaying an atypical class 1 integron harbouring aadA2-arr3-cmlA5-blaOXA-10-aadA24-dfrA14, preceding the genetic platform IS26-blaTEM-95-tet(A)-lysR-floR-virD2-ISVsa3-IS3075-IS26-qnrS1, as well as the tellurite resistance module. Other plasmids harbouring clinically relevant genes were detected, such as a ColE-type plasmid carrying the mcr-4.5 gene. Chromosomally encoded genes (fosA7) or integrons (intI1-dfrA1-aadA1-qacE-sul1/intI1-IS15-dfrA1-aadA2) were also identified. Finally, an IncY plasmid harbouring a class 2 integron (intI2-dfrA1-sat2-aadA1-qacL-IS406-sul3) was detected but not associated with a blaESBL gene. Our results evidence that pig nostrils might favour the spread of ESBL-E. coli and mcr-mediated colistin-resistance. Therefore, enhanced monitoring should be considered, especially in a sector where close contact between animals in intensive farming increases the risk of spreading antimicrobial resistance.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Suínos , Escherichia coli/genética , Fazendas , Staphylococcus aureus/genética , beta-Lactamases/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Infecções por Escherichia coli/veterinária
3.
Sci Total Environ ; 926: 171562, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38460700

RESUMO

The One Health approach of antimicrobial resistance highlighted the role of the aquatic environment as a reservoir and dissemination source of resistance genes and resistant bacteria, especially due to anthropogenic activities. Resistance to extended-spectrum cephalosporins (ESC) conferred by extended-spectrum beta-lactamases (ESBLs) in E. coli has been proposed as the major marker of the AMR burden in cross-sectoral approaches. In this study, we investigated wastewater, surface water and seawater that are subjected to official water quality monitoring in Monastir, Tunisia. While all but one sample were declared compliant according to the official tests, ESC-resistant bacteria were detected in 31 (19.1 %) samples. Thirty-nine isolates, coming from urban, industrial and surface water in Monastir, were collected and characterized using antibiograms and whole-genome sequencing. These isolates were identified as 27 Escherichia coli (69.3 %) belonging to 13 STs, 10 Klebsiella pneumoniae (25.6 %) belonging to six STs, and two Citrobacter freundii (5.1 %). We observed the persistence and dissemination of clones over time and in different sampling sites, and no typically human-associated pathogens could be identified apart from one ST131. All isolates presented a blaCTX-M gene - blaCTX-M-15 (n = 22) and blaCTX-M-55 (n = 8) being the most frequent variants - which were identified on plasmids (n = 20) or on the chromosome (n = 19). In conclusion, we observed ESC resistance in rather ubiquitous bacteria that are capable of surviving in the water environment. This suggests that including the total coliform count and the ESBL count as determined by bacterial growth on selective plates in the official monitoring would greatly improve water quality control in Tunisia.


Assuntos
Antibacterianos , Escherichia coli , Humanos , Antibacterianos/farmacologia , beta-Lactamases/genética , Tunísia , Cefalosporinas , Testes de Sensibilidade Microbiana
4.
C R Biol ; 346(S1): 9-12, 2024 03 29.
Artigo em Francês | MEDLINE | ID: mdl-37655931

RESUMO

The fight against antibiotic resistance in the animal sector over the last ten years in France (Ecoantibio plans) has largely focused on reducing the veterinary use of antibiotics. However, antibiotic resistance in an animal is not necessarily due to antibiotic therapy, but can also result from the transmission of resistant bacteria or resistance plasmids. Several examples illustrate the importance of this transmission of antibiotic resistance in the animal world, which are detailed in this communication. Like in human medicine, this nosocomial transmission can be observed in veterinary care institutions, as well as in animal husbandry. It also explains the presence of antibiotic resistance on the surface of foodstuffs, which by definition are not treated with antibiotics. At the international level, countries that are very virtuous in their use of veterinary antibiotics can display high levels of antibiotic resistance through the importation of carrier animals. Finally, the presence of antibiotic resistance in wildlife is likewise explained by contamination and not by antibiotic treatment. All these situations demonstrate that, in addition to paying attention to antibiotic prescription, an equally important facet of the fight against antibiotic resistance is to control the transmission routes of resistant bacteria.


La lutte contre l'antibiorésistance dans le secteur animal au cours des dix dernières années en France (plans Ecoantibio) a largement porté sur la réduction de l'usage vétérinaire des antibiotiques. Pour autant, l'antibiorésistance chez un animal ne résulte pas nécessairement d'une antibiothérapie, et ce sont alors des évènements de transmission de bactéries résistantes, ou de plasmides de résistance, qui en sont responsables. Plusieurs exemples illustrent l'importance de cette transmission de l'antibiorésistance dans le monde animal, qui sont détaillés dans cette communication. A l'instar de la médecine humaine, on constate cette transmission nosocomiale dans les établissements de soins vétérinaires. Elle est également identifiable dans les élevages. Elle explique également la présence d'antibiorésistance à la surface des aliments, qui par définition ne sont pas traités par antibiothérapie. Au niveau international, on constate que des pays très vertueux dans l'usage des antibiotiques vétérinaires peuvent afficher des niveaux élevés d'antibiorésistance par importation d'animaux porteurs. Enfin, la présence d'antibiorésistance dans la faune sauvage s'explique par contamination et non par un traitement antibiotique. Toutes ces situations montrent qu'en parallèle d'une attention sur la prescription des antibiotiques, un volet tout aussi important de la lutte contre l'antibiorésistance est de maîtriser les circuits de transmissions de bactéries résistantes.


Assuntos
Criação de Animais Domésticos , Bactérias , Animais , Humanos , Resistência Microbiana a Medicamentos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , França
5.
Microb Drug Resist ; 30(2): 101-107, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38011748

RESUMO

Resistance to last resort antibiotics has been increasing, particularly in low- and middle-income countries such as Lebanon, which has well established challenges in antimicrobial stewardship and other public health and environmental issues. However, data on the emergence of antibiotic resistance in the community in Lebanon are limited. In this study, we assessed resistance to last resort antibiotics in the fecal samples of 111 otherwise healthy university students in north Lebanon. The results showed that 47.7% of the samples harbored extended-spectrum cephalosporin-resistant isolates, while 2.7% of the samples yielded colistin-resistant isolates. Furthermore, molecular analyses showed that the ß-lactamase gene group, blaCTX-M-1 group, was detected in the majority (93%) of screened extended-spectrum ß-lactamase isolates. In addition, the colistin-resistant Escherichia coli isolates carried mcr-1, including the novel mcr-1.26 variant, which was previously reported in clinical samples as well as in domesticated animals and the environment in Lebanon. Taken together, these findings highlight the occurrence of resistance to important antibiotics in the community, perhaps suggesting diffuse sources, including clinical and environmental settings, and multiple factors driving the spread of multidrug-resistant bacteria and resistance determinants. There is a pressing need for comprehensive antimicrobial stewardship programs and the implementation of evidence-based practices in clinical and community settings to mitigate the increasing spread of antimicrobial resistance.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Humanos , Colistina/farmacologia , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Proteínas de Escherichia coli/genética , Universidades , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Escherichia coli , beta-Lactamases/genética , Monobactamas , Estudantes
6.
J Glob Antimicrob Resist ; 36: 70-75, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145799

RESUMO

OBJECTIVES: Wild birds are vectors of antimicrobial resistance. Birds living in close contact with humans or other animals, like feral pigeons (Columba livia), might be especially prone to acquire resistance genes such as those encoding extended-spectrum beta-lactamases (ESBLs) and carbapenemases. METHODS: Cloacal samples (n = 206) of free-living feral pigeons (C. livia) were collected in Sousse and Monastir, Tunisia. Antimicrobial susceptibility profiles were determined by disc-diffusion, and resistant isolates were short- and long-read whole-genome sequenced. Sequence analysis was performed using tools of the Centre for Genomic Epidemiology, and Phylogenetic analysis was performed based on the core-genome MLST. RESULTS: Fourteen (14/206, 6.8%) pigeons harboured Enterobacterales resistant to last-generations cephalosporins, of which 10 were CTX-M-15- or CTX-M-27-producers, while two (1.0%) carried a VIM-2-producing Pseudomonas putida. Positive pigeons lived on four different livestock farms. Three STs (ST206, ST5584, ST8149) were identified among E. coli, of which ST5584 and ST8149 were found in two different farms. Genetic diversity was also observed in Enterobacter cloacae and P. putida isolates. The blaCTX-M-27 genes were chromosomally encoded, while the blaCTX-M-15 genes were carried on highly similar IncF/F-:A-:B53 plasmids. The blaVIM-2 gene was located on a class 1 integron co-harbouring several resistance genes. CONCLUSION: Pigeons living on livestock farms carried clinically important resistance genes encoding ESBLs and carbapenemases. Our results evidenced that both clonal (ST8149 and ST5584) and plasmidic (IncF/F-:A-:B53) transfers played a role in the spread of resistance genes among pigeons. Further studies are needed to identify factors favouring the transfer and persistence of resistance genes within the pigeon communities.


Assuntos
Anti-Infecciosos , Pseudomonas putida , Animais , Humanos , Columbidae/genética , Escherichia coli , Pseudomonas putida/genética , Tipagem de Sequências Multilocus , Tunísia/epidemiologia , Filogenia , beta-Lactamases/genética
7.
Sci Rep ; 13(1): 21854, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071225

RESUMO

The Acinetobacter baumannii clonal lineage ST25 has been identified in humans and animals and found associated with outbreaks globally. To highlight possible similarities among ST25 A. baumannii of animal and human origins and to gather clues on the dissemination and evolution of the ST25 lineage, we conducted a phylogenetic analysis on n = 106 human and n = 35 animal A. baumannii ST25 genomes, including 44 sequenced for this study. Resistance genes and their genetic background were analyzed, as well. ST25 genomes are clustered into four clades: two are widespread in South America, while the other two are largely distributed in Europe, Asia and America. One particular clade was found to include the most recent strains and the highest number of acquired antibiotic resistance genes. OXA-23-type carbapenemase was the most common. Other resistance genes such as blaNDM-1, blaPER-7, and armA were found embedded in complex chromosomal regions present in human isolates. Genomic similarity among multidrug resistant ST25 isolates of either animal or human origin was revealed, suggesting cross-contaminations between the two sectors. Tracking the clonal complex ST25 between humans and animals should provide new insights into the mode of dissemination of these bacteria, and should help defining strategies for preserving global health.


Assuntos
Acinetobacter baumannii , Humanos , Filogenia , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , beta-Lactamases/genética , Proteínas de Bactérias/genética , Ásia , Testes de Sensibilidade Microbiana
8.
Microorganisms ; 11(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38004649

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAB) strains can cause severe and difficult-to-treat infections in patients with compromised general health. CRAB strains disseminate rapidly in nosocomial settings by patient-to-patient contact, through medical devices and inanimate reservoirs. The occurrence of CRAB in patients residing in the intensive care units (ICUs) of the Sahloul University hospital in Sousse, Tunisia is high. The objective of the current study was to determine whether the surfaces of items present in five ICU wards and the medical personnel there operating could serve as reservoirs for CRAB strains. Furthermore, CRAB isolates from patients residing in the ICUs during the sampling campaign were analyzed for genome comparison with isolates from the ICUs environment. Overall, 206 items were screened for CRAB presence and 27 (14%) were contaminated with a CRAB isolate. The items were located in several areas of three ICUs. Eight of the 54 (15%) screened people working in the wards were colonized by CRAB on the hands. Patients residing in the ICUs were infected with CRAB strains sharing extensive genomic similarity with strains recovered in the nosocomial environment. The strains belonged to three sub-clades of the internationally disseminated clone (ST2). A clone emerging in the Mediterranean basin (ST85) was detected as well. The strains were OXA-23 or NDM-1 producers and were also pan-aminoglycoside resistant due to the presence of the armA gene. Hygiene measures are urgent to be implemented in the Sahloul hospital to avoid further spread of difficult-to-treat CRAB strains and preserve health of patients and personnel operating in the ICU wards.

9.
Rev Infirm ; 72(294): 24-26, 2023 Oct.
Artigo em Francês | MEDLINE | ID: mdl-37838366

RESUMO

Antibiotic resistance is a public health issue that must be tackled within the One Health concept. This means continuing efforts to coordinate the action plans of the various ministries, on the one hand, and gaining a better understanding (from a scientific point of view) of the key points in the passage of antibiotic resistance between two sectors, on the other. This article shows how human medicine, veterinary medicine and the environment are affected by this issue.


Assuntos
Saúde Única , Humanos , Resistência Microbiana a Medicamentos , Saúde Pública , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
10.
Antibiotics (Basel) ; 12(9)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37760726

RESUMO

Resistance to extended-spectrum cephalosporins (ESC) and carbapenems in Enterobacterales is a major issue in public health. Carbapenem resistance in particular is associated with increased morbidity and mortality. Moreover, such resistance is often co-harbored with resistance to non-beta-lactam antibiotics, and pathogens quickly become multi-drug-resistant (MDR). Only a few studies have been published on AMR in Libyan hospitals, but all reported worrisome results. Here, we studied 54 MDR isolates that were collected from 49 patients at the Tripoli University Hospital between 2019 and 2021. They were characterized using phenotypic methods, PCR and PFGE, and a sub-set of isolates were short- and long-read whole-genome sequenced. The results showed the frequent occurrence of Klebsiella pneumoniae (49/54), among which several high-risk clones were responsible for the spread of resistance, namely, ST11, ST17, ST101 and ST147. ESC and carbapenem resistance was due to a wide variety of enzymes (CTX-M, OXA-48, NDM, KPC), with their corresponding genes carried by different plasmids, including IncF-IncHI2 and IncF-IncR hybrids. This study highlights that implementation of infection prevention, control and surveillance measures are needed in Libya to fight against AMR.

11.
Microbiol Spectr ; : e0222023, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37772831

RESUMO

European starlings are widespread migratory birds that have already been described as carrying bacteria resistant to extended-spectrum cephalosporins (ESC-R). These birds are well known in Tunisia because they spend the wintertime in this country and are hunted for human consumption. The goal of our study was to estimate the proportion of ESC-R in these birds and to characterize the collected isolates using whole-genome sequencing. Results showed that 21.5% (42/200) of the birds carried either an extended-spectrum beta-lactamase (ESBL) or an acquired AmpC gene. Diverse bla CTX-M genes were responsible for the ESBL phenotype, bla CTX-M-14 being the most prevalent, while only bla CMY-2 and one bla CMY-62 were found in AmpC-positive isolates. Likewise, different genetic determinants carried these resistance genes, including IncHI2, and IncF plasmids for bla CTX-M genes and IncI1 plasmids for bla CMY-2 genes. Three chromosomally encoded bla CTX-M-15 genes were also identified. Surprisingly, species identification revealed a large proportion (32.7%) of Escherichia marmotae isolates. This species is phenotypically indistinguishable from Escherichia coli and has obviously the same capacity to acquire ESC-R genes. Our data also strongly suggest that at least the IncHI2/pST3 plasmid can spread equally between E. coli and E. marmotae. Given the potential transmission routes between humans and animals, either by direct contact with dejections or through meat preparation, it is important to closely monitor antimicrobial resistance in European starlings in Tunisia and to set up further studies to identify the sources of contamination of these birds. IMPORTANCE The One Health concept highlighted knowledge gaps in the understanding of the transmission routes of resistant bacteria. A major interest was shown in wild migratory birds since they might spread resistant bacteria over long distances. Our study brings further evidence that wild birds, even though they are not directly submitted to antibiotic treatments, can be heavily contaminated by resistant bacteria. Our results identified numerous combinations of resistance genes, genetic supports, and bacterial clones that can spread vertically or horizontally and maintain a high level of resistance in the bird population. Some of these determinants are widespread in humans or animals (IncHI2/pST3 plasmids and pandemic clones), while some others are less frequent (atypical IncI1 plasmid and minor clones). Consequently, it is essential to be aware of the risks of transmission and to take all necessary measures to prevent the proportions of resistant isolates from increasing uncontrollably.

12.
Antibiotics (Basel) ; 12(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37508256

RESUMO

Despite the fact that the selective pressure of antibiotics on wild birds is supposed to be very weak, they are considered potential vectors of antimicrobial resistance (AMR). Obligate scavengers such as vultures can present high proportions of resistance to extended-spectrum cephalosporins (ESC) and multi-drug-resistant (MDR) bacteria, partially due to feeding stations that are provisioned with livestock carcasses from intensive farming. Here we investigated whether griffon vultures (Gyps fulvus) from two populations located in the French Alps, which feed on livestock carcasses from extensive farms, may carry such resistant bacteria. Phenotypic and genotypic characterization showed an 11.8% proportion of ESC-resistant bacteria, including five extended-spectrum beta-lactamase (ESBL)-producing and one AmpC-producing E. coli. The five ESBL-positive E. coli were clonal and all came from the same vulture population, proving their spread between animals. The ESBL phenotype was due to a blaCTX-M-15 gene located on the chromosome. Both ESBL- and AmpC-positive E. coli belonged to minor STs (ST212 and ST3274, respectively); interestingly, ST212 has already been identified in wild birds around the world, including vultures. These results suggest that actions are needed to mitigate the spread of MDR bacteria through wild birds, particularly in commensal species.

13.
J Glob Antimicrob Resist ; 34: 186-194, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482121

RESUMO

OBJECTIVES: This study aimed to characterize Escherichia coli isolates from cloacal samples of white stork nestlings, with a special focus on extended-spectrum ß-lactamases (ESBLs)-producing E. coli isolates and their plasmid content. METHODS: Cloacal samples of 88 animals were seeded on MacConkey-agar and chromogenic-ESBL plates to recover E. coli and ESBL-producing E. coli. Antimicrobial susceptibility was screened using the disc diffusion method, and the genotypic characterization was performed by polymerase chain reaction (PCR) and subsequent sequencing. S1 nuclease Pulsed-Field-Gel-Electrophoresis (PFGE), Southern blotting, and conjugation essays were performed on ESBL-producing E. coli, as well as whole-genome sequencing by short- and long-reads. The four blaESBL-carrying plasmids were completely sequenced. RESULTS: A total of 113 non-ESBL-producing E. coli isolates were collected on antibiotic-free MacConkey-agar, of which 27 (23.9%) showed a multidrug-resistance (MDR) phenotype, mainly associated with ß-lactam-phenicol-sulfonamide resistance (blaTEM/cmlA/floR/sul1/sul2/sul3). Moreover, four white stork nestlings carried ESBL-producing E. coli (4.5%) with the following characteristics: blaSHV-12/ST38-D, blaSHV-12/ST58-B1, blaCTX-M-1/ST162-B1, and blaCTX-M-32/ST155-B1. Whole-genome sequencing followed by Southern blot hybridizations on S1-PFGE gels in ESBL-positive isolates proved that the blaCTX-M-1 gene and one of the blaSHV-12 genes were carried by IncI1/pST3 plasmids, while the second blaSHV-12 gene and the blaCTX-M-32 gene were located on IncF plasmids. The two blaSHV-12 genes and the two blaCTX-M genes had similar but non-identical close genetic environments, as all four genes were flanked by a variety of insertion sequences. CONCLUSION: The role played by several genetic platforms in the mobility of ESBL genes allows for interchangeability on a remarkably small scale (gene-plasmid-clones), which may support the spread of ESBL genes.


Assuntos
Aves , Infecções por Escherichia coli , Escherichia coli , Animais , Ágar , beta-Lactamases/genética , Aves/microbiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Plasmídeos/genética , Espanha
14.
Front Microbiol ; 14: 1188423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283921

RESUMO

Introduction: As part of the EU Joint Action on Antimicrobial Resistance (AMR) and Healthcare-Associated Infections, an initiative has been launched to build the European AMR Surveillance network in veterinary medicine (EARS-Vet). So far, activities included mapping national systems for AMR surveillance in animal bacterial pathogens, and defining the EARS-Vet objectives, scope, and standards. Drawing on these milestones, this study aimed to pilot test EARS-Vet surveillance, namely to (i) assess available data, (ii) perform cross-country analyses, and (iii) identify potential challenges and develop recommendations to improve future data collection and analysis. Methods: Eleven partners from nine EU/EEA countries participated and shared available data for the period 2016-2020, representing a total of 140,110 bacterial isolates and 1,302,389 entries (isolate-antibiotic agent combinations). Results: Collected data were highly diverse and fragmented. Using a standardized approach and interpretation with epidemiological cut-offs, we were able to jointly analyze AMR trends of 53 combinations of animal host-bacteria-antibiotic categories of interest to EARS-Vet. This work demonstrated substantial variations of resistance levels, both among and within countries (e.g., between animal host species). Discussion: Key issues at this stage include the lack of harmonization of antimicrobial susceptibility testing methods used in European surveillance systems and veterinary diagnostic laboratories, the absence of interpretation criteria for many bacteria-antibiotic combinations of interest, and the lack of data from a lot of EU/EEA countries where little or even surveillance currently exists. Still, this pilot study provides a proof-of-concept of what EARS-Vet can achieve. Results form an important basis to shape future systematic data collection and analysis.

15.
Int J Food Microbiol ; 403: 110303, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37384974

RESUMO

Bacteria present in raw milk can carry acquired or intrinsic antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs). However, only a few studies have evaluated raw milk cheese as a potential reservoir of ARGs. This study thus aimed at providing new data regarding resistance markers present in raw milk cheese. Sheep (n = 360) and cow (n = 360) cheese samples produced in France were incubated in buffered peptone water supplemented with acriflavin or novobiocin; as corroborated by 16S metabarcoding, samples were enriched in Gram-negative bacteria since Escherichia coli and Hafnia alvei respectively accounted for 40 % and 20 % of the samples' microbiota. Screening of the samples for the presence of 30 ARGs and 16 MGEs by high throughput qPCR array showed that nine ARGs conferring resistances to 1st-generation beta-lactams, aminoglycosides, trimethoprim/sulfonamides and tetracyclines occurred in >75 % of both sheep and cow samples. This is neither surprising nor alarming since these resistance genes are widely spread across the One Health human, animal and environmental sectors. Conversely, genes conferring resistances to last-generations cephalosporins were rarely identified, while those conferring resistances to carbapenems or amikacin, which are restricted to human use, were never detected. Multiple MGEs were detected, the most frequent ones being IncF plasmids, confirming the potential transmission of ARGs. Our results are in line with the few studies of the resistome of milk or milk cheese showing that genes conferring resistances to 1st-generation beta-lactams, aminoglycosides and tetracyclines families are widespread, while those conferring resistances to critically important antibiotics are rare or absent.


Assuntos
Queijo , Humanos , Bovinos , Animais , Ovinos , Queijo/microbiologia , Antibacterianos/farmacologia , Escherichia coli , Genes Bacterianos , Aminoglicosídeos , beta-Lactamas
16.
Int J Antimicrob Agents ; 61(2): 106713, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36640846

RESUMO

Antimicrobial resistance (AMR) poses a serious threat to human, animal and environmental health worldwide. Colistin has regained importance as a last-resort treatment against multi-drug-resistant Gram-negative bacteria. However, colistin resistance has been reported in various Enterobacteriaceae species isolated from several sources. The 2015 discovery of the plasmid-mediated mcr-1 (mobile colistin resistance) gene conferring resistance to colistin was a major concern within the scientific community worldwide. The global spread of this plasmid - as well as the subsequent identification of 10 MCR-family genes and their variants that catalyse the addition of phosphoethanolamine to the phosphate group of lipid A - underscores the urgent need to regulate the use of colistin, particularly in animal production. This review traces the history of colistin resistance and mcr-like gene identification, and examines the impact of policy changes regarding the use of colistin on the prevalence of mcr-1-positive Escherichia coli and colistin-resistant E. coli from a One Health perspective. The withdrawal of colistin as a livestock growth promoter in several countries reduced the prevalence of colistin-resistant bacteria and its resistance determinants (e.g. mcr-1 gene) in farm animals, humans and the environment. This reduction was certainly favoured by the significant fitness cost associated with acquisition and expression of the mcr-1 gene in enterobacterial species. The success of this One Health intervention could be used to accelerate regulation of other important antimicrobials, especially those associated with bacterial resistance mechanisms linked to high fitness cost. The development of global collaborations and the implementation of sustainable solutions like the One Health approach are essential to manage AMR.


Assuntos
Proteínas de Escherichia coli , Saúde Única , Animais , Humanos , Colistina/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Farmacorresistência Bacteriana/genética , Enterobacteriaceae/genética , Proteínas de Escherichia coli/genética , Plasmídeos/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-33619063

RESUMO

The relatedness of the equine-associated Escherichia coli ST1250 and its single- and double-locus variants (ST1250-SLV/DLV), obtained from horses in Europe, was studied by comparative genome analysis. A total of 54 isolates of E. coli ST1250 and ST1250-SLV/DLV from healthy and hospitalized horses across Europe [Czech Republic (n=23), the Netherlands (n=18), Germany (n=9), Denmark (n=3) and France (n=1)] from 2008-2017 were subjected to whole-genome sequencing. An additional 25 draft genome assemblies of E. coli ST1250 and ST1250-SLV/DLV were obtained from the public databases. The isolates were compared for genomic features, virulence genes, clade structure and plasmid content. The complete nucleotide sequences of eight IncHI1/ST9 and one IncHI1/ST2 plasmids were obtained using long-read sequencing by PacBio or MinION. In the collection of 79 isolates, only 10 were phylogenetically close (<8 SNP). The majority of isolates belonged to phylogroup B1 (73/79, 92.4%) and carried bla CTX-M-1 (58/79, 73.4%). The plasmid content of the isolates was dominated by IncHI1 of ST9 (56/62, 90.3%) and ST2 (6/62, 9.7%), while 84.5% (49/58) bla CTX-M-1 genes were associated with presence of IncHI1 replicon of ST9 and 6.9% (4/58) with IncHI1 replicon of ST2 within the corresponding isolates. The operon for the utilization of short chain fructooligosaccharides (fos operon) was present in 55 (55/79, 69.6%) isolates, and all of these carried IncHI1/ST9 plasmids. The eight complete IncHI1/ST9 plasmid sequences showed the presence of bla CTX-M-1 and the fos operon within the same molecule. Sequences of IncHI1/ST9 plasmids were highly conserved (>98% similarity) regardless of country of origin and varied only in the structure and integration site of MDR region. E. coli ST1250 and ST1250-SLV/DLV are phylogenetically-diverse strains associated with horses. A strong linkage of E. coli ST1250 with epidemic multi-drug resistance plasmid lineage IncHI1/ST9 carrying bla CTX-M-1 and the fos operon was identified.

18.
Nat Commun ; 13(1): 7490, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509735

RESUMO

Extended-spectrum cephalosporins (ESCs) are critically important antimicrobial agents for human and veterinary medicine. ESC resistance (ESC-R) genes have spread worldwide through plasmids and clonal expansion, yet the distribution and dynamics of ESC-R genes in different ecological compartments are poorly understood. Here we use whole genome sequence data of Enterobacterales isolates of human and animal origin from Europe and North America and identify contrasting temporal dynamics. AmpC ß-lactamases were initially more dominant in North America in humans and farm animals, only later emerging in Europe. In contrast, specific extended-spectrum ß-lactamases (ESBLs) were initially common in animals from Europe and later emerged in North America. This study identifies differences in the relative importance of plasmids and clonal expansion across different compartments for the spread of different ESC-R genes. Understanding the mechanisms of transmission will be critical in the design of interventions to reduce the spread of antimicrobial resistance.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Humanos , Resistência às Cefalosporinas/genética , Antibacterianos/farmacologia , beta-Lactamases/genética , Cefalosporinas/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Plasmídeos/genética
19.
Int J Food Microbiol ; 380: 109885, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36057242

RESUMO

Resistant Enterobacterales of avian intestinal origin can contaminate carcasses during broiler processing and thereby spread through the human food chain. This study aimed at assessing the prevalence, diversity and genomic characteristics of ESBL/AmpC Enterobacterales in poultry flocks from different farms and cities in the state of Paraná, Brazil. Enterobacterales isolated from cloacal samples were subjected to antimicrobial susceptibility testing (AST). ESBL/AmpC isolates were whole-genome sequenced and subjected to S1-nuclease pulsed-field gel electrophoresis (S1-PFGE) followed by Southern blotting to determine the location of resistant genes on plasmids. A surprisingly high proportion of E. coli (40.6 %) collected on non-selective plates presented an ESBL/AmpC phenotype. Multidrug resistance was statistically not higher in ESBL/AmpC E. coli having the potential to be Avian Pathogenic (APEC-like) compared to non-APEC-like ESBL/AmpC E. coli isolates. Resistance to antibiotics not authorized for use in poultry in the State of Paraná was observed, suggesting that antimicrobial resistance (AMR) is co-selected by the use of veterinary-licensed antibiotics. Phylogenetic analyzes revealed the presence of identical or highly similar ESBL/AmpC E. coli clones on farms distant up to 100 km of each other; this strongly suggests that the centralization and verticalization of the poultry industry can facilitate the spread of resistant bacteria among different farms, companies, and cities. The molecular characterization of clones and plasmids proved the dominance of the ST224 E. coli lineage and the IncF/blaCTX-M-55 plasmid, possibly indicating the emergence of successful clones and plasmids adapted to the chicken host. Our data contribute to the epidemiological tracking of resistance mechanisms in Enterobacterales from poultry and to knowledge for further One Health studies to control the spread of resistant bacteria from food animals to humans.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Brasil , Cefalosporinas , Galinhas/microbiologia , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Humanos , Filogenia , Plasmídeos/genética , Aves Domésticas/microbiologia , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA